Linear Algebra and the C Language/a0bh


Install and compile this file in your working directory.

/* ------------------------------------ */
/*  Save as :   c00d.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA R5
#define   CA C5
#define   Cb C1 
/* ------------------------------------ */
/* ------------------------------------ */
int main(void)
{
double   xy[8] ={
   1,       2,
   2,      -8,
   3,      -8,
   4,      -3  };

   
double ab[RA*(CA+Cb)]={
/* x**2    y**2    x       y       e    =  0   */
  +1,     +0,     +0,     +0,     +0,     +1,   
  +1,     +4,     +1,     +2,     +1,     +0,   
  +4,    +64,     +2,     -8,     +1,     +0,   
  +9,    +64,     +3,     -8,     +1,     +0,   
 +16,     +9,     +4,     -3,     +1,     +0     
};

double **XY = ca_A_mR(xy,i_mR(R4,C2));

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,i_mR(RA,Cb));

double **Q    = i_mR(RA,CA);
double **R    = i_mR(CA,CA);

double **invR = i_mR(CA,CA);
double **Q_T  = i_mR(CA,RA);


double **invR_Q_T = i_mR(CA,RA);
double **x        = i_mR(CA,Cb); // x = invR * Q_T * b

  clrscrn();
  printf("\n");
  printf(" Find the coefficients a, b, c, d, e, of the curve \n\n");
  printf("     ax**2 + by**2 + cx + dy + e  = 0 \n\n");
  printf(" that passes through these four points.\n\n");
  printf("    x     y");
  p_mR(XY,S5,P0,C6);
  printf(" Using the given points, we obtain this matrix.\n");
  printf("  (a = 1. This is my choice)\n\n");  
  printf(" Ab :\n");
  printf("   x**2    y**2    x       y       e    =  0     ");
  p_mR(Ab,S7,P2,C6);
  stop();

    
  clrscrn();
  QR_mR(A,Q,R);    
  printf(" Q :");
  p_mR(Q,S10,P4,C6); 
  printf(" R :");
  p_mR(R,S10,P4,C6);
  stop();

  clrscrn();
  transpose_mR(Q,Q_T);   
  printf(" Q_T :");
  pE_mR(Q_T,S12,P4,C6); 
  inv_mR(R,invR); 
  printf(" invR :");
  pE_mR(invR,S12,P4,C6);
  stop();
  
  clrscrn();
  printf(" Solving this system yields a unique\n"
         " least squares solution, namely   \n\n");
  mul_mR(invR,Q_T,invR_Q_T);
  mul_mR(invR_Q_T,b,x);
  printf(" x = invR * Q_T * b :");
  p_mR(x,S10,P2,C6);
  printf(" The coefficients a, b, c, d, e, of the curve are : \n\n"
         "  %+.2fx**2 %+.2fy**2 %+.2fx %+.2fy %+.2f = 0\n\n"
            ,x[R1][C1],x[R2][C1],x[R3][C1],x[R4][C1],x[R5][C1]);  
  
  stop();

  f_mR(XY);  
  f_mR(A);
  f_mR(b);
  f_mR(Ab);
  f_mR(Q);
  f_mR(Q_T);
  f_mR(R);
  f_mR(invR);  
  f_mR(invR_Q_T); 
  f_mR(x); 

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Screen output example:
 Find the coefficients a, b, c, d, e, of the curve 

     ax**2 + by**2 + cx + dy + e  = 0 

 that passes through these four points.

    x     y
   +1    +2 
   +2    -8 
   +3    -8 
   +4    -3 

 Using the given points, we obtain this matrix.
  (a = 1. This is my choice)

 Ab :
   x**2    y**2    x       y       e    =  0     
  +1.00   +0.00   +0.00   +0.00   +0.00   +1.00 
  +1.00   +4.00   +1.00   +2.00   +1.00   +0.00 
  +4.00  +64.00   +2.00   -8.00   +1.00   +0.00 
  +9.00  +64.00   +3.00   -8.00   +1.00   +0.00 
 +16.00   +9.00   +4.00   -3.00   +1.00   +0.00 

 Press return to continue. 


 Q :
   +0.0531    -0.0369    -0.3184    +0.6481    +0.6888 
   +0.0531    +0.0166    +0.9276    +0.3589    +0.0879 
   +0.2123    +0.7087    +0.1022    -0.4485    +0.4909 
   +0.4777    +0.5240    -0.1642    +0.4552    -0.5129 
   +0.8492    -0.4707    +0.0287    -0.2069    +0.1172 

 R :
  +18.8414   +52.0130    +5.3074    -7.9612    +1.5922 
   +0.0000   +74.7238    +1.1234    -8.4165    +0.7786 
   -0.0000    -0.0000    +0.7543    +2.2650    +0.8943 
   +0.0000    -0.0000    +0.0000    +1.2851    +0.1587 
   +0.0000    +0.0000    +0.0000    +0.0000    +0.1832 

 Press return to continue. 


 Q_T :
 +5.3074e-02  +5.3074e-02  +2.1230e-01  +4.7767e-01  +8.4919e-01 
 -3.6944e-02  +1.6587e-02  +7.0871e-01  +5.2400e-01  -4.7065e-01 
 -3.1842e-01  +9.2757e-01  +1.0219e-01  -1.6420e-01  +2.8745e-02 
 +6.4808e-01  +3.5888e-01  -4.4855e-01  +4.5520e-01  -2.0685e-01 
 +6.8878e-01  +8.7929e-02  +4.9094e-01  -5.1292e-01  +1.1724e-01 

 invR :
 +5.3074e-02  -3.6944e-02  -3.1842e-01  +6.4808e-01  +6.8878e-01 
 -0.0000e+00  +1.3383e-02  -1.9930e-02  +1.2278e-01  -6.5947e-02 
 +0.0000e+00  -0.0000e+00  +1.3257e+00  -2.3367e+00  -4.4478e+00 
 -0.0000e+00  +0.0000e+00  -0.0000e+00  +7.7818e-01  -6.7412e-01 
 -0.0000e+00  +0.0000e+00  -0.0000e+00  +0.0000e+00  +5.4589e+00 

 Press return to continue. 


 Solving this system yields a unique
 least squares solution, namely   

 x = invR * Q_T * b :
     +1.00 
     +0.04 
     -5.00 
     +0.04 
     +3.76 

 The coefficients a, b, c, d, e, of the curve are : 

  +1.00x**2 +0.04y**2 -5.00x +0.04y +3.76 = 0

 Press return to continue.


Copy and paste in Octave:
function xy = f (x,y)
  xy = +1.00*x^2 +0.04*y^2 -5.00*x +0.04*y +3.76;
endfunction

f (+1,+2) 
f (+2,-8)
f (+3,-8) 
f (+4,-3)