Linear Algebra and the C Language/a0bg


Install and compile this file in your working directory.

/* ------------------------------------ */
/*  Save as :   c00c.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA R5
#define   CA C5
#define   Cb C1 
/* ------------------------------------ */
/* ------------------------------------ */
int main(void)
{
double   xy[8] ={
   1,       4,
   2,       5,
   3,      -7,
   4,       5  };

   
double ab[RA*(CA+Cb)]={
/* x**2    y**2    x       y       e    =  0   */
  +1,     +0,     +0,     +0,     +0,     +1,   
  +1,    +16,     +1,     +4,     +1,     +0,   
  +4,    +25,     +2,     +5,     +1,     +0,   
  +9,    +49,     +3,     -7,     +1,     +0,   
 +16,    +25,     +4,     +5,     +1,     +0   
};

double **XY = ca_A_mR(xy,i_mR(R4,C2));

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,i_mR(RA,Cb));

double **Q    = i_mR(RA,CA);
double **R    = i_mR(CA,CA);

double **invR = i_mR(CA,CA);
double **Q_T  = i_mR(CA,RA);


double **invR_Q_T = i_mR(CA,RA);
double **x        = i_mR(CA,Cb); // x = invR * Q_T * b

  clrscrn();
  printf("\n");
  printf(" Find the coefficients a, b, c, d, e, of the curve \n\n");
  printf("     ax**2 + by**2 + cx + dy + e  = 0 \n\n");
  printf(" that passes through these four points.\n\n");
  printf("    x     y");
  p_mR(XY,S5,P0,C6);
  printf(" Using the given points, we obtain this matrix.\n");
  printf("  (a = 1. This is my choice)\n\n");  
  printf(" Ab :\n");
  printf("   x**2    y**2    x       y       e    =  0     ");
  p_mR(Ab,S7,P2,C6);
  stop();

    
  clrscrn();
  QR_mR(A,Q,R);    
  printf(" Q :");
  p_mR(Q,S10,P4,C6); 
  printf(" R :");
  p_mR(R,S10,P4,C6);
  stop();

  clrscrn();
  transpose_mR(Q,Q_T);   
  printf(" Q_T :");
  pE_mR(Q_T,S12,P4,C6); 
  inv_mR(R,invR); 
  printf(" invR :");
  pE_mR(invR,S12,P4,C6);
  stop();
  
  clrscrn();
  printf(" Solving this system yields a unique\n"
         " least squares solution, namely   \n\n");
  mul_mR(invR,Q_T,invR_Q_T);
  mul_mR(invR_Q_T,b,x);
  printf(" x = invR * Q_T * b :");
  p_mR(x,S10,P2,C6);
  printf(" The coefficients a, b, c, d, e, of the curve are : \n\n"
         "  %+.2fx**2 %+.2fy**2 %+.2fx %+.2fy %+.2f = 0\n\n"
            ,x[R1][C1],x[R2][C1],x[R3][C1],x[R4][C1],x[R5][C1]);  
  
  stop();

  f_mR(XY);  
  f_mR(A);
  f_mR(b);
  f_mR(Ab);
  f_mR(Q);
  f_mR(Q_T);
  f_mR(R);
  f_mR(invR);  
  f_mR(invR_Q_T); 
  f_mR(x); 

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Screen output example:
 Find the coefficients a, b, c, d, e, of the curve 

     ax**2 + by**2 + cx + dy + e  = 0 

 that passes through these four points.

    x     y
   +1    +4 
   +2    +5 
   +3    -7 
   +4    +5 

 Using the given points, we obtain this matrix.
  (a = 1. This is my choice)

 Ab :
   x**2    y**2    x       y       e    =  0     
  +1.00   +0.00   +0.00   +0.00   +0.00   +1.00 
  +1.00  +16.00   +1.00   +4.00   +1.00   +0.00 
  +4.00  +25.00   +2.00   +5.00   +1.00   +0.00 
  +9.00  +49.00   +3.00   -7.00   +1.00   +0.00 
 +16.00  +25.00   +4.00   +5.00   +1.00   +0.00 

 Press return to continue. 


 Q :
   +0.0531    -0.0740    -0.3021    +0.8975    -0.3081 
   +0.0531    +0.3652    +0.4419    +0.4171    +0.7033 
   +0.2123    +0.3903    +0.6371    +0.0179    -0.6296 
   +0.4777    +0.6791    -0.5380    -0.1419    +0.0335 
   +0.8492    -0.4977    +0.1346    -0.0069    +0.1139 

 R :
  +18.8414   +50.7923    +5.3074    +2.1761    +1.5922 
   +0.0000   +36.4300    +1.1919    -3.8300    +0.9368 
   -0.0000    -0.0000    +0.6405    +9.3923    +0.6756 
   +0.0000    +0.0000    +0.0000    +2.7168    +0.2863 
   -0.0000    -0.0000    -0.0000    +0.0000    +0.2210 

 Press return to continue. 


 Q_T :
 +5.3074e-02  +5.3074e-02  +2.1230e-01  +4.7767e-01  +8.4919e-01 
 -7.3999e-02  +3.6520e-01  +3.9025e-01  +6.7906e-01  -4.9773e-01 
 -3.0208e-01  +4.4185e-01  +6.3712e-01  -5.3802e-01  +1.3462e-01 
 +8.9751e-01  +4.1711e-01  +1.7931e-02  -1.4185e-01  -6.8557e-03 
 -3.0810e-01  +7.0327e-01  -6.2960e-01  +3.3489e-02  +1.1386e-01 

 invR :
 +5.3074e-02  -7.3999e-02  -3.0208e-01  +8.9751e-01  -3.0810e-01 
 +0.0000e+00  +2.7450e-02  -5.1082e-02  +2.1530e-01  -2.3912e-01 
 +0.0000e+00  -0.0000e+00  +1.5613e+00  -5.3975e+00  +2.2203e+00 
 +0.0000e+00  -0.0000e+00  +0.0000e+00  +3.6808e-01  -4.7684e-01 
 -0.0000e+00  +0.0000e+00  -0.0000e+00  +0.0000e+00  +4.5243e+00 

 Press return to continue. 


 Solving this system yields a unique
 least squares solution, namely   

 x = invR * Q_T * b :
     +1.00 
     +0.28 
     -6.00 
     +0.48 
     -1.39 

 The coefficients a, b, c, d, e, of the curve are : 

  +1.00x**2 +0.28y**2 -6.00x +0.48y -1.39 = 0

 Press return to continue.


Copy and paste in Octave:
function xy = f (x,y)
  xy = +1.000000000*x^2 +0.280303030*y^2 -6.000000000*x +0.477272727*y -1.393939394;
endfunction

f (+1,+4) 
f (+2,+5) 
f (+3,-7)
f (+4,+5)