Linear Algebra and the C Language/a08w


Install and compile this file in your working directory.

/* ------------------------------------ */
/*  Save as :   c00d.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define  RA  R4
#define  CA  C6
#define  Cb  C1
/* ------------------------------------ */
#define CB     C2            /* B : a basis for the column space of A */
/* ------------------------------------ */
#define CbFREE Cb+C3
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
   +9,   -15,   +21,   -18,    +6,   +27,    +0, 
  -18,   +30,   -42,   +36,   -12,   -54,    +0, 
  +21,   -35,   +49,   -42,   +14,   +63,    +0, 
   -6,   +10,   -14,   +12,    -4,   -18,    +0 
};

double **Ab =      ca_A_mR(ab, i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  =    c_Ab_A_mR(Ab,           i_mR(RA,CA));
double **b  =    c_Ab_b_mR(Ab,           i_mR(RA,Cb));

double **AT = transpose_mR(A,            i_mR(CA,RA));

double **B   =                           i_mR(RA,CB);
double **BT  =                           i_mR(CB,RA);
double **BTb =                 i_Abr_Ac_bc_mR(CB,RA,Cb); 

double **BTb_free =            i_Abr_Ac_bc_mR(RA,RA,CbFREE);
double **b_free   =                      i_mR(RA,CbFREE);

double **AT_bfree =                      i_mR(CA,CbFREE);

int r;

  clrscrn();
  printf("Basis for a Column Space by Row Reduction :\n\n");
  printf(" A :");
  p_mR(A,S6,P1,C10);
  printf(" b :");
  p_mR(b,S6,P1,C10);
  printf(" Ab :");
  p_mR(Ab,S6,P1,C10);
  stop();

  clrscrn();
  
  printf(" The leading 1’s of Ab give the position \n"
         " of the columns of A  which form a basis \n"
         " for the column space of A \n\n"
         " A :");
  p_mR(A,S7,P3,C10);
  printf(" gj_PP_mR(Ab,NO) :");
  gj_PP_mR(Ab,NO);
  p_mR(Ab,S7,P3,C10); 
  
  c_c_mR(A,C1,B,C1);
  
  printf(" B :  a basis for the column space of A");
  p_mR(B,S7,P3,C10); 
  stop();
        
/* B has only a column. I copy B into BT. I put the pivot at one.      
   Instead, check whether the columns of B are linearly independent.   
   Then I can put the free variables.                                 */          
  transpose_mR(B,BT);  
          c_mR(BT,BTb); 
      gj_PP_mR(BTb,NO);
        
  clrscrn(); 
  put_zeroR_mR(BTb,BTb_free);  
  printf(" BTb_free : put_zeroR_mR(BTb,BTb_free);");  
  p_mR(BTb_free,S7,P3,C10); 
  put_freeV_mR(BTb_free);
  printf(" BTb_free : put_freeV_mR(BTb_free);");  
  p_mR(BTb_free,S7,P3,C10);  
  stop();
  
  clrscrn();  
  r = rsize_R(BTb_free);
  while(r>R1)    
        zero_above_pivot_gj1Ab_mR(BTb_free,r--);
        
  printf(" BTb_free : zero_above_pivot_gj1Ab_mR(BTb_free,r--);");  
  p_mR(BTb_free,S7,P3,C10); 

  c_Ab_b_mR(BTb_free,b_free);
  printf(" b_free : A basis for the null space of AT"); 
  p_mR(b_free,S10,P3,C7);
  stop();	

  clrscrn();
  printf(" AT :");
  p_mR(AT, S7,P3,C10); 
  printf(" b_free :"); 
  p_mR(b_free, S7,P3,C10);
  printf(" The row vectors of AT"
         " are orthogonal to the column vectors of bfree\n");  
  printf(" AT * bfree :"); 
  p_mR(mul_mR(AT,b_free,AT_bfree), S7,P3,C10); 
  stop();
         
  f_mR(Ab);
  f_mR(A);
  f_mR(b);

  f_mR(AT);
    
  f_mR(B);
  f_mR(BT);
  f_mR(BTb);
  
  f_mR(BTb_free);
  f_mR(b_free);    
  f_mR(AT_bfree); 
       
  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


The free vectors of the system BTb will be a basis for the orthogonal complement of AT, with B a basis of the column space of A.


Screen output example:

Basis for a Column Space by Row Reduction :

 A :
  +9.0  -15.0  +21.0  -18.0   +6.0  +27.0 
 -18.0  +30.0  -42.0  +36.0  -12.0  -54.0 
 +21.0  -35.0  +49.0  -42.0  +14.0  +63.0 
  -6.0  +10.0  -14.0  +12.0   -4.0  -18.0 

 b :
  +0.0 
  +0.0 
  +0.0 
  +0.0 

 Ab :
  +9.0  -15.0  +21.0  -18.0   +6.0  +27.0   +0.0 
 -18.0  +30.0  -42.0  +36.0  -12.0  -54.0   +0.0 
 +21.0  -35.0  +49.0  -42.0  +14.0  +63.0   +0.0 
  -6.0  +10.0  -14.0  +12.0   -4.0  -18.0   +0.0 

 Press return to continue. 


 The leading 1s of Ab give the position 
 of the columns of A  which form a basis 
 for the column space of A 

 A :
 +9.000 -15.000 +21.000 -18.000  +6.000 +27.000 
-18.000 +30.000 -42.000 +36.000 -12.000 -54.000 
+21.000 -35.000 +49.000 -42.000 +14.000 +63.000 
 -6.000 +10.000 -14.000 +12.000  -4.000 -18.000 

 gj_PP_mR(Ab,NO) :
 +1.000  -1.667  +2.333  -2.000  +0.667  +3.000  +0.000 
 +0.000  +0.000  -0.000  +0.000  +0.000  +0.000  +0.000 
 +0.000  -0.000  +0.000  +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  -0.000  +0.000  +0.000  +0.000  +0.000 

 B :  a basis for the column space of A
 +9.000  +0.000 
-18.000  +0.000 
+21.000  +0.000 
 -6.000  +0.000 

 Press return to continue. 


 BTb_free : put_zeroR_mR(BTb,BTb_free);
 +1.000  -2.000  +2.333  -0.667  +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000  +0.000 

 BTb_free : put_freeV_mR(BTb_free);
 +1.000  -2.000  +2.333  -0.667  +0.000  +0.000  +0.000  +0.000 
 +0.000  +1.000  +0.000  +0.000  +0.000  +1.000  +0.000  +0.000 
 +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000  +0.000 
 +0.000  +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000 

 Press return to continue. 


 BTb_free : zero_above_pivot_gj1Ab_mR(BTb_free,r--);
 +1.000  +0.000  +0.000  +0.000  +0.000  +2.000  -2.333  +0.667 
 +0.000  +1.000  +0.000  +0.000  +0.000  +1.000  +0.000  +0.000 
 +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000  +0.000 
 +0.000  +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000 

 b_free : A basis for the null space of AT
    +0.000     +2.000     -2.333     +0.667 
    +0.000     +1.000     +0.000     +0.000 
    +0.000     +0.000     +1.000     +0.000 
    +0.000     +0.000     +0.000     +1.000 

 Press return to continue. 


 AT :
 +9.000 -18.000 +21.000  -6.000 
-15.000 +30.000 -35.000 +10.000 
+21.000 -42.000 +49.000 -14.000 
-18.000 +36.000 -42.000 +12.000 
 +6.000 -12.000 +14.000  -4.000 
+27.000 -54.000 +63.000 -18.000 

 b_free :
 +0.000  +2.000  -2.333  +0.667 
 +0.000  +1.000  +0.000  +0.000 
 +0.000  +0.000  +1.000  +0.000 
 +0.000  +0.000  +0.000  +1.000 

 The row vectors of AT are orthogonal to the column vectors of bfree
 AT * bfree :
 +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  -0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  -0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000 

 Press return to continue.